Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.
نویسندگان
چکیده
The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.
منابع مشابه
Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent i...
متن کاملImproved Lagrangian mixing models for passive scalars in isotropic turbulence
Lagrangian data for velocity, scalars, and energy and scalar dissipation from direct numerical simulations are used to validate Lagrangian mixing models for inert passive scalars in stationary isotropic turbulence. The scalar fluctuations are nearly Gaussian, and, as a result of production by uniform mean gradients, statistically stationary. Comparisons are made for Taylor-scale Reynolds number...
متن کاملClosure Approximations for Passive Scalar Turbulence: A Comparative Study on an Exactly Solvable Model with Complex Features
Some standard closure approximations used in turbulence theory are analyzed by examining systematically the predictions these approximations produce for a passive scalar advection model consisting of a shear flow with a fluctuating cross sweep. This model has a general geometric structure of a jet flow with transverse disturbances, which occur in a number of contexts, and it encompasses a wide ...
متن کاملSuperstatistics in hydrodynamic turbulence
Superstatistics is a ‘statistics of a statistics’ relevant for driven nonequilibrium systems with fluctuating intensive parameters. It contains Tsallis statistics as a special case. We show that probability density functions of velocity differences and accelerations measured in Eulerian and Lagrangian turbulence experiments are well reproduced by simple superstatistics models. We compare fits o...
متن کاملCoarse-grained description of a passive scalar
The issue of the parameterization of small-scale dynamics is addressed in the context of passive-scalar turbulence. The basic idea of our strategy is to identify dynamical equations for the coarse-grained scalar dynamics starting from closed equations for two-point statistical indicators. With the aim of performing a fully-analytical study, the Kraichnan advection model is considered. The white...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2016